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This article describes an analysis of the general problem of the penetra- 
tion of a solid cone into a coaxial conical region which encloses ideal 

incompressible weightless fluid. The cone velocity is a power function of 
time. Both plane and axially symmetrical cases are reviewed. 

Cone penetration at constant velocity is a special case of this 
Problem [ 1-5 1. This problem also embraces that of a transient model of 
the cumulative explosion of a missile in a conical envelope. 

An approximate method of calculating the resistance and the velocity 
proffle along the free surface is proposed (In particular, calculation of 
the velocity of the spray or the height of the accumulated rave). The 
method is applicable to any geometry. 

1. Basis of Problem. 1. We begin by discussing the penetration of 
ideal weightless fluid by a wedge. At the start (t P 01, the fluid is at 
rest and occupies a solid angle of coaxial with the wedge (Fig. 1). It is 
assumed that the wedge and the region r occupied by the fluid share a 
vertical axis of synrnetry. Ihe penetration velocity of the we* is 
vertically downwards and is considered to be known. It is a power function 
of time, represented by 

V= --CtYyO 

lhe fluid begins to move aa a result of the pressure of the wedge. Be- 
cause ‘there are no mass forces, this motion will have a potential 4(x, y, t) 
which should satisfy the following boundary value problem (see Fig. 2 for 
notation) ; 

In region r 
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2 = Vcosa 
an 

on B’AB 
(l-1) 
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‘he normal here is assumed to be the inner one with respect to the 
fluid, S is the free surface y = {(x, t ). This is unknown at the outset 
and is determined from the kinematic condition 

‘Ihe following condition of regularity 

limvcp=O for z+$ya-,co 

and initial conditions should also be satisfied 

‘p (0, G Y) = 0, c (0, x) = -WW 

Fig. 1. 

2. ‘lhe wedge penetration problem will be a special case of this problem 
rhen the angle p = n/2. The Wagner&do v constant penetration velocity 
problan can be obtained fran the present one by putting the index y = 0. 

Y 

Fig. 2. 
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Fig. 3. Fig. 4. 
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The problem of sytunetrical stream impact is also a particular case if we 
assume that streams I and II (Fig. 3) are geometrically similar and are 

syrmnetrically located with respect to the n and y axes. At the instant of 
starting, too, they should share point 0, whilst at infinity the velo- 

cities of the fluid particles are equal in magnitude, opposite in sign, 

and vary according to a power law. 

Pecause of symmetry the r axis will be a streamline. If we introduce 

a system of coordinates associated with a plane and put a = 0, the above 
problem becomes that of lateral flow of fluid against a plane (Fig. 4). 

Note. It is obvious that the problem 

under gravity, from an initial state of 
problem. In that case we should put a = 

of lateral flow of a fluid wedge 

rest, can be reduced to the above 

0 and y = 1. 

3. Problem (1.1) to (1.4) is a similarity or nautomodel” one. Because 

of this, the solution will depend on tuc dimensionless groups of the 

variables .z, y and t. 

Owing to symmetry about the y axis it is sufficient to study the flow 

on the right hand side of the y axis. 

Introduce the dimensionless variables 5 and q by means of the following 

transformations 

E = Asina Y 

c ty+l 
--cosa-cosa 

,tY+’ 
(1.5) 

7j = r-cosa + -Y- sina + sina 
I$+1 CtY+l 

The velocity potential #(x, y, t 1 and the equation of the free bound- 

ary t(x, t) can be represented thus 

ep = cVy+i CD (S, +q), y = t (2, t) = ctr+i {f (5) sina*Ecosa-I} (1.6) 

where Q and f are the required non-dimensional functions. 

Our chosen system of coordinates 5, I] is convenient because the ex- 

pression for the free boundary r) = f(t) is a single-valued function of 

the one variable c. 

To the region I in variables 6, I), whose shape varies in time, there 

corresponds a completely determinate invariable region T (Fig. 5). 

The function @([, ‘1) in the T region will be a 

C andrl. 8W 0 
F+w=o 

harmonic in variables 

The equation of the sides of the wedge in this coordinate system will 

be [ = 0. Let us find the boundary conditions for function @. 
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Fig. 5. 

To do this, we first of all work out the differentials of the function 

4(x, y, t); 

~=calay((27+1)~-((r+1)(E+coscr)~~ -(r+ I)(?-sina)::] 

a9 
& = cty ( aa, . am 

ax sma +,cosa 
> 

a? -= CtY 
ay ( 

--Cosaf~sina 
x a? > 

Let no denote the vector of the normal external to the wedge surface. 
We then have 

a9 
Zi = ax ’ COs (n, z) + 2 COS (n, y) = cty {(g sin a + g cos a) sin a + 

+(-$ cosa + gsina)(-cosa)) = cty$f 

Now put this expression into the first of the conditions (1.1) and we 

find that along B’A B the function Q, satisfies the condition 

am 
E = cosa (1.7) 

‘Ihe assymptotic relation (1.3) will apparently remain valid, i.e. 

limv 0 = 0 for p+?J*+co (1.8) 

Moreover the constant pressure condition (the second in (1.1)) takes 

the following form; 

(1.9) 
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We now transform the kinematic condition 

In dimensionless variables it will be: 

Now we do some auxiliary calculation 

a5 z= (r+ l)ctY{j(E)sincc-Ecosa-l} 

x - = cty+1 {I’ (E) sin a - cos a} 
% 

4 
z = at 

~+gg+$$=g+3+3$ 

ae - =-(7+1)~8sina+(7+1)~~c0S~=-(7+I)~(~+c0sa) at 

86 sin a 2 cosa 
-=_ 
3X cty+1 s=--‘,,u+l 

dE 
2i= -((7+1)~(5+cOsa)+~~c/T($sin~+~cosa)- 

co9 a / aa, -- 
c ty+1 

cty \- ;y cosa+gsina)=-((r+1)f(i+cosa)+f~ 

Both here, and in the expressions to follow, a dash denotes a deriva- 

tive with respect to 5. Insert these expressions into condition (1.10) 
and, after some rearrangement , e bring it to the following form 

(7+1){f--sina-/I’(-_cosa} +iTj’=$ 

Now introduce the expressions for velocity 

and, finally, the kinematic condition along the free boundary can be 

written thus 

v=(/-sina)(T+l)-~‘{(~+1)(~+cosa)-u} (1.11; 

4. One inprtant thing should be mentioned here for future reference, 

namely, if the equation of the free surface is known, i.e. if function 
f(t) is known (for instance from experiment), the velocity distribution 

u, u along the free surface reduces to solving an ordinary nonlinear 
differential equation. To obtain this equation we must eliminate u from 
equations (1.9) and (1.11). 
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In equation (1.11) all the functions depend on 5. On differentiating 

it we obtain 

U' = j'u'--- ((7 + I)([ + cosa)-U} 

Moreover, bearing in mind that along the free boundary 

(1.12) 

dcD 
- = u + f’v 
d.5 

we take the total derivative of the dynamic relation (1.4); 

TU + rrf'+(r + 1) {U'(t + cosa- --+) + v'(j-sina-Y-$-j) = 0 

Replacing u' by its expression (1.12), we obtain 

v+rv/‘--((r-l-1) [u’ ( E+cosa-+-) + [f'u' - 
- I” ((7 + 1) (E + cos a - u))](f-sina- -&)} = 0 

u can be eliminated from this equation by means of (1.11). After some 

obvious rearrangement we arrive at 

[(r + 1) (E + cos a) - ul [u’ (1 + f’2) - f’l” ((7 + 1) (E + cos 4 - ul + 

+ rf’21 = TU + 7 (7 + 1) I’ (f - sin 4 (1.13) 

Equation (1.13) is an ordinary first-order nonlinear differential 

equation. We must solve this, putting [ = 00. 'lhe solution should also 

satisfy the condition (1.'7), i.e. u(O) = cos a. We thus arrive at the 

boundary problem for a first-order equation. In general the problem can- 

not be solved. We will see below that a further condition can be used to 

get a reasonable shape for the free surface. 

Equation (1.13) can 

the stream constant) 

be simplified if y = 0 (velocity of wedge or of 

(E+c0sa--)1~‘(1+f’*)--jnf’(~+c0sa--~)]=0 (1.14) 

At the surface of the wedge (5 = 0) the normal wedge velocity component 

is u = cos a. From physical considerations, it is evident, too, that 

u < cos a for any value of 5 > 0. 'lherefore the multiplier for no values 

e f 0. Furthermore, from equation (1.14) we have 

E+ cosa-u#O 

uf = 1’l” (5 + cos a - u) 
1 + f’” 

(1.15) 

If f(t) is already given this becomes an ordinary linear differential 

equation in u. lhus if y = 0 it can be solved by quadrature. Moreover, if 
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we insert the solution so found into kinematic condition, (1.11) we deter-, 
mine the velocity o without further quadratures. The case y = 0, it 
should be mentioned, does not exhaust all the values of parameter y for 
which equation (1.13) can be solved in quadratures. 

To explain this circumstance more fully, let us put equation (1.13) 
into a slightly altered form. Solving for u’, we get (1.16) 

uI = f’f” ICY -I- 1) (5 + ~0s 01) - ~1 :/f12 ; YU + (Y + 1) Y (f - sin a) f’ 
1 + f” I +p (1 + f’*) I(Y + 1) (5 + co.5 a) - 4 

Now introduce the new variable y = (y + 1) (5 + cos a) - u. ,‘lhen equa- 
tion (1.16) becomes: 

y’ = -&2y+f2T+1)-+ (1.17) 

where 
&Y(Y+w’(f - sin a) + < + cos a] 

1 + /‘” 

If y = 0, then B = 0, and we then have 

y' = 

This equation corresponds to (1.15). Equation (1.17) reduces to a 
linear one in the further two cases: 

1. Wherry=- 1. We have B = 0 and therefore 

2. Wheny=- l/2. By making the change of variable y2 = z we arrive 

at a first-order linear equation 

f”” B 
z’ = - 2 (, + p) 2 - T 

3 Determination of Resultant Fluid Pressure. We will work -. 
out the drag of the wedge. Denote the momentum within volume r by K, then: 

z+F=o (2.1) 

where F is the vector resultant force of the fluid on the wedge. Because 
of symmetry its projection on the x axis will be zero. For the other pro- 
jection we have 

F,= vdg (2.2) 
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Work out K 
Y 

(2.3) 

Introducing nondimensional variables 

we get 

K, = pc3t3r+2K* 

Region; in the variables F and G is fixed, and therefore the drag 

(2.4) 

force will be 

Now transform 

Here s is the surface enclosing the volume 7. First of all let us 

F,= -dG :2 - p (37 + 2) C3t3’+‘h’* (2.5) 

the integral within expression (2.5) by Green’s lheorem 

assume that it consists of free surfaces S, and S,, the sides of the wedge 
u1 and u2 and an arc of sufficiently large radius R (Fig. 6). ‘lhe normal 
here is taken external with respect to the fluid. 

From symnetry, this expression can be put; 

K’ = 2Jr + 2Jz _t Js 

where 

J1 = 
s 

< ;-; dS, J,= qt!$dS, 
s 

S1 01 

Now let us deal with the integral 

J3 = 
s 

;edS 
1 an G-w 

SR 

J3 = 
s 

Or,=’ dS = - 
c 

0 cos OdS 

sR s’k 

Here n is the normal external to the fluid, S is external to the wedge, 
q” is unit vector along axis 5. EvidentlyV 7 = ‘1’. 

Now let us examine the Laurent exp%sioE of _the complex potential W = 
@ + i ‘Y in the neighbourhood of point c = 5‘ + iv = 0~. As the fluid at 
infinity is at rest, (d W/dz ), = 0, so that the expansion W(z) will not 

contain positive powers of z. Thus 
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Fig. 6. 

We can put a0 = 0 without losing generality. (At the starting instant 

the fluid is at rest; 4 E 0 for t = 0; as at infinity the fluid is at 

rest, for any value of t we have @), 1 0, hence (W)_ = 0). Coefficient 

aI is zero likewise because owing to symnetry there is no flow through 

the? axis, and therefore the circulation is zero. lhus the potential 

Q = Re W can be represented by the following formula; 

where function x(r , 6) is limited for any values of 8 for r + bo. ‘Ihere- 

fore in equation (2.6) 

IimJ, = 0 for r403 

For the integral J, in (2.6) we have 

Zf., ::. -- 2 
5 

r,co%Ls :=Z q rj.dS 

0, 0, 

Denote the volume of wedge immersed in the fluid by r 1: 

:I ::- \ d: = \1 divftl: = 2$ q.dS -+ \ q*dS 

71 71 01 rci_It 

Along BB’ $ = II = const. Thus, if L is taken as the length of BB' , 

then 

However, as OA = 1, from Fig. 6, we find 

L -= 2(h + 1)ctgct 

And thus 
J, == TV - 2/1(/l + l)ctga= (1 -P)ctga 
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because 

Tr= (h+l)“ctga 

We will write the integral in the coordinate system [, v (Fig. 5). 

Making use of the fact that 

~=j(4)sina--[cosa-I, 
aa 1 .-L 
an - VI + f’2 

(v - I’u) 

dS = VI + jf2 de 

where rj = f((> is the shape of the free fluid surface in this system of 

coordinates, u and u, normal and tangential velocities respectively of 

the fluid with respect to the wedge, it is possible to express it in this 

form 

s r 3-a = Y,j(E) 1 an sin a - E cos z - I] [v -- j' (E) u] de 
s 1 II 

And finally we obtain the following formula for K*; 

h.‘(l--h2)ctga+2~[j(~)si~~zt-~cos~-lI[u-/.ou]d~ (2.7) 

0 

where 

h = j (0) sill a -- 1 

Therefore if the free surface is known, the problem of finding the 

drag force reduces to the solution of an ordinary differential equation 

and to quadratures. 

3. Three-Dimensional Problems. 1. We will now deal with two three- 
dimensional problems; namely, that of axially symnetric penetration of an 
infinite cone into an ideal incompressible fluid, and the problem of the 

axially symnetric cumulative. jet, To find the velocity potential $(x,y, t 1 

we will solve the following boundary problem (notation the same as in 
Fig. 2. except that x is now a radius, the distance from the axis of 

symnetry Yh 

0 in the region of 7 

for B’AB 

$!+~[(~~+(~;8]=0 for S 

(3.1) 

As before, we here take the normal positive inward with respect to 

fluid, S is the free surface y = [(z, t) which is determined from the 
kineraatic condition 

the 
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(3.2) 

Additionally, the condition of regularity must be fulfilled 

lim v'cp=O for yz+ 9-3 03 

and the initial condition 

(3.3) 

‘p (G y, 0) = 0, 6 (2,O) = 2 ctg p (3.4) 

In view of symnetry about axis 0y it is sufficient to deal only with 

the flow in any semi-plane meridian section. 

Introduce dimensionless coordinates [ and 77 (Fig. 51, connected with 

n, y and t by relations (1.5) and the velocity potential +(x, y, t), and 

the equation of the free surface y = [(n, t) will be put in form (1.6). 

'Ihe boundary conditions on the cone generator, at infinity and on the free 

surface of the fluid in (, 7 coordinates, do not change their form as 

compared with the plane case and can be described by formulas (1.7), (1.8), 

(1.9) and (1.11) respectively, but the equation for potential a((, q) will 

be different. After some rearrangement it can be put into this form 

(3.5) 

'Ihe analysis carried out for the relation for the free surface (see 4, 

para. 1) is also valid for the case of axial symmetry. 

2. We now work out the drag 

theorem of momentun it follows 

vertically, is; 

as the cone penetrates the fluid. From the 

that the force F,, acting on the cone 

F, = dK,/dt (3.6) 

where K, is the momentum component along the y axis of the matter enclosed 

in volume r. Owing to symmetry, the other m>mentum components within the 
fluid are zero. 

To work out KY 

h-, = +,d~ = p[$dT 
5 7 

we use nondimensional variables 

Then we! have 

(3.7) 

(3.8) 
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Because the region T in the variables z, i, z is fixed, it follows 
that K* is independent of time. Thus, for the drag force we have the ex- 
pression 

FY = - p (47 + 3) cw+2r (3.11) 

Rearrange the integral in expression f 3.10); 

- 
where S is the surface enclosing the volume;. Surface3 can be considered 
as consisting of the wetted surface of the cone u, free surface S and the 
surface of a sphere of sufficiently large radius SR. Then for K* we have 
the expression 

li’:_ s ;-~dS+~dS$\; $dS (3.12) 
0 a GR 

After calculation similar to that carried out for the plane problem, 
we finally arrive at the following formula for K* 

K’= -+g2a(f f/2)2(1-2h)f (3.13) 

sina-[cosa-_][f(E) cosa+Esina][v-_‘(~)u]dE 

wbere q = f&l is the shape of the free surface of the fluid in e, q co- 
ordinates; u, v are respectively velocities normal and tangential to the 
cone generator, h = f(O) sin a - 1, Now, using (3.111, we are able to 
determine the force acting on the penetrating cone if the form of the 
free surface of the fluid q = f(e) is known. 

4. Method of Numerical Calculation. To work out the approximate 
value of the force acting on the body, and the velocity distribution 
along the free boundary, it is sufficient to find the shape of the latter 
approximately. This can be done by the laws of conservation, In particular, 
if we use only the’ law of conservation of mass, the free surface can be 
approximated by the following expression 

(4.1) 

As the fluid is at rest at infinity, the free boundary in (6, ‘I) co- 
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ordinates has the asymptote 

+J2=Q@-a)E+ ,,,;;!., 

where a is the angle between the side of the wedge (cone 

the Ox axis, and p is the half angle of the liquid wedge 

‘Iherefore the coefficients a and b will be 

It follows from the 

over, that the immersed 

placed. ‘Ihis condition 

c and d; 

in the plane case 

condition of incompressibility of the fluid, more- 
volume of the cone equals that of the fluid dis- 

generator) and 

(cone) (Fig. 5). 

(4.2) 

gives one of the equations for findiqg coefficients 

d 1 sinpcosa 
-= 2 cos@-a) c 

and for three dimensions 

w9 

sin2 @ cos a 
c COSZ(!3 -a) 

=o (4.4) 

‘lhe second equation, which connects these coefficients, can be obtained 

thus. To express the velocity u on the free fluid surface we have the 
ordinary first-order differential equation (1.15); 

U, _ I’!’ (t: -t- rosa - ~1 
1 -j- 1’” (4.5) 

‘lbe function u must here satisfy t.m conditions; that at infinity 

u(m) = 0 and that on the side of the wedge (cone generator) u(O) = cos a. 

We will use the first condition to find the arbitrary constant in solving 

equation (4.5). ‘Ihe condition on the side of the wedge (cone generator) 

will give the second tie-up between c and d, which, both in the plane 

and in the three-dimensional cases, reduces to one and the same transcen- 

dental equation in the following form 

where 

y. = /’ (0) = tg (p -a) - cd, y, = f’(a) = tg(p--a) 

In this manner the free boundary of the fluid is determined, and both 
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kinematic and dynamic conditions are accurately fulfilled on it. 

Now we can make use of the formulas deduced in the foregoing para- 
graphs. It is now possible to find approximately the value of the normal 

velocity at the free surface and also the total force acting on the 

immersed wedge (cone). 

S.&me Results of Calcrdations. 'Ihe high speed computer ‘Strela* 

was used for working out calculations in accordance with the above method. 

These results are compared with known experimental results and some 

calculated results in the graphs shown below. 

For wedges of angle iz varying from 10’ to 80° in steps of 100 the shape 

of the free surface (splash stream) was calculated (see Fig. 71. A general 

similarity can be seen in the relations between the distances from the 

cone vertex to the apices of the splash streams; with a + 1712 this dis- 

tance tends to zero, and, conversely, with a + 0 it tends to infinity. 

Velocity profiles have been drawn along the free surface. It can be seen 

that the velocity at the tip of the splash stream increases rapidly with 

dicreasing wedge angle and tends to infinity when the wedge turns into a 

plate (Fig. 8). 

Figure 9 gives calculated values of resultant thrust of the fluid on 

the wedge as a function of wedge angle a. Our results agree with experi- 

ment and with those marked out by other authors.over a wide range of wedge 

u=8Ll” 70’ 60” 

Fig. 7. 

angles. ‘Ihey can be recommended for practical application for angles a 

between 20’ and 900. Curve 1 gives the reaction of the fluid on the wedge, 
curve 3 the resultant thrust on a cone, and curve 2 represents a develop- 
ment from the plate analogy. (11 is the load integral obtained in [ 4 I , 
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l- 
Y 

U- 

f- 

L 

ff 

Fig. 8. Fig. 9. 

30 60 

(2) is derived from a more accurate analysis [ 4 1 , and (3) comes from 

Wagner’s analysis for a = 18’. 

‘lhe theory is open to improvement for small wedge angles. It may be 

assumed that the plate analogy might give a satisfactory result here. 

The method of solving the penetration problem can be applied without 

any alteration to the problem of the lateral flow of a fluid wedge against 

a solid wall, with the condition that fluid particles at infinity go at 

constant velocity, and, at the initial instant, the fluid wedge touches 

the wall. Free surface shapes have been calculated, velocity profiles and 

the pressure of the wedge on the surface have been evaluated, all as a 
function of the ha1 f-angle of the wedge. (Fig. 10 shows the relation bet- 

ween the fluid thrust and the half-angle of a wedge). 

Lavrentiev [ 6 I proposed an explanation of the cumrlative effect of an 

explosion with a conical envelope. According to Lavrentiev’s model the 

movement of the envlope is similar to that of an impacting stream. 
Lavrentiev reviewed plane and axially symmetrical models, but the motion 

was considered to be stationary. Despite such an apparently rough method 

of approach, Lavrentiev’s model has at least succeeded in giving sane 

qualitative explanation of phenomena which seemed very complicated 

hitherto. 

Ihe approach to the solution of the stream impact problem in this work 
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opens the way to a study of the more complicated mathematical model of 

the cumulative explosion, the model of transient accumulation of plane 

and conical charges. 

Fig. 10. Fig. 11. 

Oppose, at the initial instant, the fluid occupies a volme limited 

below by a solid conical surface with vertex angle of 26 Wig. 111, and 
a free boundary which also represents a cone, but with vertex angle 

2@ - f3). It is assumed that at the initial instant we have velocities V 
directed along the cone generator. It is easy to see that the problem pu: 

in this form reduces to the one discussed above. ‘lhe forms of the free 

surfaces of cumulative streams have been worked out and the velocities 

along them have been calculated as functions of angles @ and 8. 

‘Ihe table shows values of dimensionless velocities at the apices of 

cumulative streams for various stream athicknessesn (angle /3) and various 

envelope angles (6). The table reveals that the apex velocity, which can 

TABLE 

I 
-____ 
p = 10” 

-- 

1 .4627 
I.7920 
2.0197 
2.3337 
2.6955 
3 . 1604 
3.9OU6 
5.7776 

20” ! 200 

1.9294 
2.3161 
2.7653 
3.3213 
4.0932 
5.~,158 
8.9708 

2.5032 
3.0515 
3.8032 
4.8577 
G .i%8 

11.83’50 

T T- 
;i. x17 
4,1487 
5.45% 
7.810:! 

14.3708 

4.3350 
5.8743 
8.6496 

16.4418 

6. IUX 
9.2197 

18.0092 

9.504li 
10.0’66 

_‘_ 
w 

19.4636 
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exceed V. by factors of ten, increases rapidly both with increased stream 
thickness and decreased envelope angle. ‘lhe whole effect is a transient 
one, and therefore stationary models will not give such estimates. 

It has been shown in 3 above that the solution of three-dimensional 
(axially symnetricl problems on cone penetration, on lateral flow of a 
fluid cone and impact of conical streams can be derived by direct analogy 
with plane problems. Free surface shapes and velocities along them have 
been calculated in terms of cone angles. 

It is evident from this that the general pattern of velocity variation 
is similar to that of a wedge, but the changes take place over a region 
which lies closer to the surface of the body. 

Figure 8 shows how the velocity at the nose of a splash stream varies. 
In the case of the cone the velocity increases less rapidly with reduced 
apex angle than in the case of the wedge. Figure 9 shows the relation 
between the reaction of the fluid on the cone for various cone angles a. 
On comparing these with the results for the wedge we see that for large 
values of a the curve for the cone lies below that of the wedge, but for 
values of a within the range 30’ to 40’ the cone displays a sudden in- 
crease in reaction, and the curve becomes much steeper than that of the 
wedge. 

Figure 10 shows how the pressure of an outflowing fluid cone reacts on 
a conical surface for various angles of divergence of the latter, p. The 
pressure increases with increase in angle /3 more rapidly than in the case 
of plane flow. 
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